Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative error $\epsilon$ using $\tilde{O}(n^{3}+n^{2.5}/\epsilon)$ queries to a membership oracle and $\tilde{O}(n^{5}+n^{4.5}/\epsilon)$ additional arithmetic operations. For comparison, the best known classical algorithm uses $\tilde{O}(n^{4}+n^{3}/\epsilon^{2})$ queries and $\tilde{O}(n^{6}+n^{5}/\epsilon^{2})$ additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requires $\Omega(\sqrt n+1/\epsilon)$ quantum membership queries, which rules out the possibility of exponential quantum speedup in $n$ and shows optimality of our algorithm in $1/\epsilon$ up to poly-logarithmic factors.
翻译:估计一个 convex 体体体的体积是Convex 测算的核心问题, 并且可以被视为连续计算版本 。 我们提出了一个量子算法, 在多复制错误中估算一个 $\\ epsilon$ 在 $\ tilde{ O} (n ⁇ 3\\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \