3D object detection is an important task in autonomous driving to perceive the surroundings. Despite the excellent performance, the existing 3D detectors lack the robustness to real-world corruptions caused by adverse weathers, sensor noises, etc., provoking concerns about the safety and reliability of autonomous driving systems. To comprehensively and rigorously benchmark the corruption robustness of 3D detectors, in this paper we design 27 types of common corruptions for both LiDAR and camera inputs considering real-world driving scenarios. By synthesizing these corruptions on public datasets, we establish three corruption robustness benchmarks -- KITTI-C, nuScenes-C, and Waymo-C. Then, we conduct large-scale experiments on 24 diverse 3D object detection models to evaluate their corruption robustness. Based on the evaluation results, we draw several important findings, including: 1) motion-level corruptions are the most threatening ones that lead to significant performance drop of all models; 2) LiDAR-camera fusion models demonstrate better robustness; 3) camera-only models are extremely vulnerable to image corruptions, showing the indispensability of LiDAR point clouds. We release the benchmarks and codes at https://github.com/kkkcx/3D_Corruptions_AD. We hope that our benchmarks and findings can provide insights for future research on developing robust 3D object detection models.


翻译:3D目标检测是自动驾驶中感知周围环境的重要任务。尽管现有的3D检测器表现出色,但它们缺乏对真实世界污染的稳健性,例如恶劣的天气、传感器噪音等,引发对自动驾驶系统的安全性和可靠性的担忧。为了全面且严谨地基准测试3D检测器的污染稳健性,在本文中我们设计了27种在真实行驶场景中考虑的常见污染,包括LiDAR和摄像机输入。通过在公共数据集上合成这些污染,我们建立了三个污染稳健性基准测试——KITTI-C、nuScenes-C和Waymo-C。然后,我们对24个不同的3D目标检测模型进行大规模实验,评估它们的污染稳健性。基于评估结果,我们得出了几个重要的发现,包括:1)运动级别的污染是导致所有模型性能显著下降的最具威胁的因素;2)LiDAR-摄像机融合模型展现出更好的稳健性;3)单摄像机模型极易受到图像污染的威胁,显示了LiDAR点云不可或缺的重要性。我们在https://github.com/kkkcx/3D_Corruptions_AD上发布了基准测试和代码。我们希望我们的基准测试和发现可以为未来开发稳健的3D目标检测模型的研究提供启示。

1
下载
关闭预览

相关内容

【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
57+阅读 · 2021年3月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
57+阅读 · 2021年3月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员