Techniques known as Nonlinear Set Membership prediction, Lipschitz Interpolation or Kinky Inference are approaches to machine learning that utilise presupposed Lipschitz properties to compute inferences over unobserved function values. Provided a bound on the true best Lipschitz constant of the target function is known a priori they offer convergence guarantees as well as bounds around the predictions. Considering a more general setting that builds on Hoelder continuity relative to pseudo-metrics, we propose an online method for estimating the Hoelder constant online from function value observations that possibly are corrupted by bounded observational errors. Utilising this to compute adaptive parameters within a kinky inference rule gives rise to a nonparametric machine learning method, for which we establish strong universal approximation guarantees. That is, we show that our prediction rule can learn any continuous function in the limit of increasingly dense data to within a worst-case error bound that depends on the level of observational uncertainty. We apply our method in the context of nonparametric model-reference adaptive control (MRAC). Across a range of simulated aircraft roll-dynamics and performance metrics our approach outperforms recently proposed alternatives that were based on Gaussian processes and RBF-neural networks. For discrete-time systems, we provide guarantees on the tracking success of our learning-based controllers both for the batch and the online learning setting.
翻译:称为非线性设定成员预测、 Lipschitz 内插或 Kinky 推论的技术是使用假定的 Lipschitz 属性进行机算学习的方法,这种方法使用假定的 Lipschitz 属性来计算对未观测的函数值的调整参数。如果对目标函数的真正最佳Lipschitz 常数有一个约束,它们先验地提供趋同的保证以及预测周围的界限。考虑到基于Hoelder连续性相对于伪度的更一般的设置,我们提议一种在线方法,从可能因受约束观测错误损坏的功能值观测中估算Hoelder 恒定在线值值。利用这一方法,在有偏差的推断规则中计算适应参数,将产生一种非参数的机器学习方法,我们为此建立了强有力的普遍近距离保证。也就是说,我们的预测规则可以学习任何连续功能,即越来越密集的数据限制在取决于观测不确定性程度的最坏的错误范围内。 我们采用的方法在非对准性模型参考适应性适应性控制的范围内(MARAC) 。 在一系列模拟飞机滚动动力动力和性测试网络上,我们提出的直径定的学习方法是我们最近提出的基于高压的学习的系统。