3D Morphable Models (3DMMs) are generative models for face shape and appearance. However, the shape parameters of traditional 3DMMs satisfy the multivariate Gaussian distribution while the identity embeddings satisfy the hypersphere distribution, and this conflict makes it challenging for face reconstruction models to preserve the faithfulness and the shape consistency simultaneously. To address this issue, we propose the Sphere Face Model(SFM), a novel 3DMM for monocular face reconstruction, which can preserve both shape fidelity and identity consistency. The core of our SFM is the basis matrix which can be used to reconstruct 3D face shapes, and the basic matrix is learned by adopting a two-stage training approach where 3D and 2D training data are used in the first and second stages, respectively. To resolve the distribution mismatch, we design a novel loss to make the shape parameters have a hyperspherical latent space. Extensive experiments show that SFM has high representation ability and shape parameter space's clustering performance. Moreover, it produces fidelity face shapes, and the shapes are consistent in challenging conditions in monocular face reconstruction.
翻译:3D 负式模型( 3DMM ) 是面形和外观的基因模型。 但是, 传统的 3DMM 的形状参数满足了多变高斯的分布, 而身份嵌入则满足了高斯的分布, 这场冲突使得面部重建模型同时维护忠诚和形状一致性成为挑战。 为了解决这个问题, 我们提议了 Sphere Face 模型( SFM ), 这是用于单面面部重建的新颖的 3DMM 3DM 模型, 它既能维护形状的忠诚性,又能保持特征的一致性。 我们的SFM的核心是用来重建 3D 脸部形状的基础矩阵, 而基本矩阵则通过采用两阶段培训方法学习, 在第一和第二阶段分别使用 3D 和 2D 培训数据 。 为了解决分布不匹配, 我们设计了一个新的损失, 使形状参数有一个超球面潜层空间。 广泛的实验显示 SFM 有高的表达能力和设定参数组合性能。 此外, 它产生正面形状, 并且形状在单眼面面重建中具有挑战性的条件是一致的形状。