With ever increasing depth and width in deep neural networks to achieve state-of-the-art performance, deep learning computation has significantly grown, and dot-products remain dominant in overall computation time. Most prior works are built on conventional dot-product where weighted input summation is used to represent the neuron operation. However, another implementation of dot-product based on the notion of angles and magnitudes in the Euclidean space has attracted limited attention. This paper proposes DeepCAM, an inference accelerator built on two critical innovations to alleviate the computation time bottleneck of convolutional neural networks. The first innovation is an approximate dot-product built on computations in the Euclidean space that can replace addition and multiplication with simple bit-wise operations. The second innovation is a dynamic size content addressable memory-based (CAM-based) accelerator to perform bit-wise operations and accelerate the CNNs with a lower computation time. Our experiments on benchmark image recognition datasets demonstrate that DeepCAM is up to 523x and 3498x faster than Eyeriss and traditional CPUs like Intel Skylake, respectively. Furthermore, the energy consumed by our DeepCAM approach is 2.16x to 109x less compared to Eyeriss.
翻译:随着深度和广度不断提高的深神经网络的深度和广度以达到最先进的性能,深层学习计算已经大幅增长,点产品在总体计算时间中仍然占主导地位。大多数先前的工程都建在传统点产品上,使用加权输入总和来代表神经神经操作。然而,基于Euclidean空间角度和大小概念的点产品的另一个实施受到了有限的关注。本文提出了DeepCAM,这是建立在两个关键创新基础上的推推力加速器,以缓解卷轴神经网络的计算时滞。第一个创新是建立在Euclidean空间计算过程中的近似点产品,可以用简单的点对数操作取代增益和倍增益。第二个创新是动态尺寸内存可定位(以CAM为基础)加速器,用较低的计算时间来进行小点操作和加速CNN。我们关于基准图像识别数据集的实验表明,DeepCAMAM和3498x的计算速度比Eclocal 和C-C-C-C-C-C-C-C-C-C-Cyal-Ideal-C-Ide-C-C-Ideal-C-C-C-Ide-Ide-x-C-Ix-x-C-C-C-C-C-C-Ide-L-I-IL-C-C-C-L-I-I-I-I-I-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-代