This paper presents a new approach for the estimation and inference of the regression parameters in a panel data model with interactive fixed effects. It relies on the assumption that the factor loadings can be expressed as an unknown smooth function of the time average of covariates plus an idiosyncratic error term. Compared to existing approaches, our estimator has a simple partial least squares form and does neither require iterative procedures nor the previous estimation of factors. We derive its asymptotic properties by finding out that the limiting distribution has a discontinuity, depending on the explanatory power of our basis functions which is expressed by the variance of the error of the factor loadings. As a result, the usual ``plug-in" methods based on estimates of the asymptotic covariance are only valid pointwise and may produce either over- or under-coverage probabilities. We show that uniformly valid inference can be achieved by using the cross-sectional bootstrap. A Monte Carlo study indicates good performance in terms of mean squared error. We apply our methodology to analyze the determinants of growth rates in OECD countries.
翻译:本文提出了在具有交互固定效应的小组数据模型中估算和推断回归参数的新方法。 它所依据的假设是,系数负荷可以表现为共差时间平均值与特异性误差术语之间的一个未知的平稳功能。 与现有方法相比, 我们的估测器具有简单的局部最小方形, 既不需要迭接程序, 也不需要先前对各种因素的估计。 我们通过发现限制分布有不连续性, 取决于我们基础功能的解释力, 其表现是因要素负荷误差而出现的差异。 因此, 通常的“ 插入” 方法仅是有效的点, 并可能产生过度或覆盖不足的概率。 我们表明, 使用跨部门靴带可以实现统一有效的推论。 Monte Carlo的研究显示, 以平均正方差表示良好的表现。 我们采用我们的方法分析经合组织国家增长率的决定因素。</s>