Rather than refining individual candidate solutions for a general non-convex optimization problem, by analogy to evolution, we consider minimizing the average loss for a parametric distribution over hypotheses. In this setting, we prove that Fisher-Rao natural gradient descent (FR-NGD) optimally approximates the continuous-time replicator equation (an essential model of evolutionary dynamics) by minimizing the mean-squared error for the relative fitness of competing hypotheses. We term this finding "conjugate natural selection" and demonstrate its utility by numerically solving an example non-convex optimization problem over a continuous strategy space. Next, by developing known connections between discrete-time replicator dynamics and Bayes's rule, we show that when absolute fitness corresponds to the negative KL-divergence of a hypothesis's predictions from actual observations, FR-NGD provides the optimal approximation of continuous Bayesian inference. We use this result to demonstrate a novel method for estimating the parameters of stochastic processes.
翻译:我们不是通过比照进化来改进一般非凝固优化问题的个别候选解决办法,而是考虑尽量减少参数分布相对于假设的平均损失。 在这种背景下,我们证明Fisher-Rao自然梯度下降(FR-NGD)最理想地接近了连续时间复制方程(一个进化动态的基本模型),将相竞假设相对适合的差错最小化。我们把这一发现称为“平衡自然选择”并通过从数字上解决一个非凝固优化的样板问题来证明它的实用性。接下来,我们通过开发离散时间反流动力和贝斯规则之间的已知联系,我们证明当绝对健康与实际观察的假设预测的负KL-维度相对应时,FR-NGD提供了连续波亚推断的最佳近度。我们用这一结果来展示一种新颖的方法来估计随机过程的参数。</s>