We present SPSG, a novel approach to generate high-quality, colored 3D models of scenes from RGB-D scan observations by learning to infer unobserved scene geometry and color in a self-supervised fashion. Our self-supervised approach learns to jointly inpaint geometry and color by correlating an incomplete RGB-D scan with a more complete version of that scan. Notably, rather than relying on 3D reconstruction losses to inform our 3D geometry and color reconstruction, we propose adversarial and perceptual losses operating on 2D renderings in order to achieve high-resolution, high-quality colored reconstructions of scenes. This exploits the high-resolution, self-consistent signal from individual raw RGB-D frames, in contrast to fused 3D reconstructions of the frames which exhibit inconsistencies from view-dependent effects, such as color balancing or pose inconsistencies. Thus, by informing our 3D scene generation directly through 2D signal, we produce high-quality colored reconstructions of 3D scenes, outperforming state of the art on both synthetic and real data.
翻译:我们介绍了SPSG, 这是一种创新的方法,通过 RGB-D 扫描观测生成高质量、彩色的3D 场景模型,通过学习以自我监督的方式推断未观测到的场景几何和颜色。 我们自我监督的方法通过将不完整的 RGB-D 扫描与更完整的扫描版本联系起来,学习了共同油漆几何和颜色。 值得注意的是,我们不依靠3D 重建损失来为我们的3D 几何和颜色重建提供信息,而是提议在 2D 上进行对抗性和感知性损失,以便实现高分辨率、高品质的彩色场景重建。 这利用了单个原始 RGB-D 框架的高分辨率、自我一致的信号,与三D 重建框架的结合,这些框架显示与依赖视觉的影响不一致,例如色彩平衡或造成不一致。 因此,我们通过 2D 信号直接告知我们的 3D 场景生成, 我们产生了高质量的3D 场景的彩色重建,在合成和真实数据上都优于艺术状态。