The Nystr\"om method is one of the most popular techniques for improving the scalability of kernel methods. However, it has not yet been derived for kernel PCA in line with classical PCA. In this paper we derive kernel PCA with the Nystr\"om method, thereby providing one of the few available options to make kernel PCA scalable. We further study its statistical accuracy through a finite-sample confidence bound on the empirical reconstruction error compared to the full method. The behaviours of the method and bound are illustrated through computer experiments on multiple real-world datasets. As an application of the method we present kernel principal component regression with the Nystr\"om method, as an alternative to Nystr\"om kernel ridge regression for efficient regularized regression with kernels.
翻译:Nystr\'om 方法是改进内核方法可伸缩性的最常用技术之一。 但是, 尚未根据古典的五氯苯甲醚对内核五氯苯甲醚进行测算。 在本文中, 我们用Nystr\'om 方法生成内核五氯苯甲醚, 从而提供了使内核五氯苯甲醚可伸缩的为数不多的选择之一。 我们通过对实证重建错误与完整方法的有限样本信任来进一步研究其统计准确性。 该方法的行为和约束性通过多个真实世界数据集的计算机实验来说明。 作为我们用Nystr\'om 方法呈现内核主要部分回归的方法的一种应用, 以Nystr\'om 内核脊回归法替代 Nystr\" 内核脊回归法, 用内核有效正常回归法。