We study the Maximum Independent Set of Rectangles(MISR) problem, where we are given a set of axis-parallel rectangles in the plane and the goal is to select a subset of non-overlapping rectangles of maximum cardinality. In a recent breakthrough, Mitchell obtained the first constant-factor approximation algorithm for MISR. His algorithm achieves an approximation ratio of 10 and it is based on a dynamic program that intuitively recursively partitions the input plane into special polygons called corner-clipped rectangles (CCRs). In this paper, we present a 4-approximation algorithm for MISR which is based on a similar recursive partitioning scheme. However, we use a more general class of polygons -- polygons that are horizontally or vertically convex -- which allows us to provide an arguably simpler analysis and already improve the approximation ratio. Using a new fractional charging argument and fork-fences to guide the partitions, we improve the approximation ratio even more to 4. We hope that our ideas will lead to further progress towards a PTAS for MISR.
翻译:我们研究了最大独立矩形( MISR) 的问题, 向我们提供了在平面上一组轴- 平行矩形( CCRs) 的问题, 目的是选择一组非重叠矩形 。 在最近的一次突破中, Mitchell 获得了MISR 的第一个常数- 因素近似算法 。 他的算法实现了10 的近似比率, 并且它基于一个动态程序, 将输入平面直线递地分割成特殊多边形, 称为角- 环形矩形( CCRs) 。 在本文中, 我们为 MISR 提出了一个基于相似的循环分配方案 的 4 匹配算法 。 然而, 我们使用一个更普通的多边形( 多边形), 即横向或垂直的矩形 -- 使我们能够提供比较简单的分析, 并且已经改进了近似比率 。 使用一个新的点充量充电和叉来引导分区, 我们甚至改进了近似比率 4 。