In this paper we study the following problem: Given $k$ disjoint sets of points, $P_1, \ldots, P_k$ on the plane, find a minimum cardinality set $\mathcal{T}$ of arbitrary rectangles such that each rectangle contains points of just one set $P_i$ but not the others. We prove the NP-hardness of this problem.
翻译:在本文中,我们研究了以下问题:鉴于各点各点各点各点各点各点各点各点之间脱节,在飞机上,我们发现一个最起码的基点,即任意矩形的基点,即$\mathcal{T}$,这样,每个矩形只包含一套P$,而其他的则不包括。我们证明了这个问题的NP-硬性。