We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-based active learning, as long as the measure of uncertainty properly aligns with the underlying model and the model properly reflects uncertainty in unexplored regions. In particular, we use a recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier and we introduce an acquisition function designed to measure uncertainty in this graph-based classifier that identifies unexplored regions of the data. We introduce a diagonal perturbation in PWLL which produces exponential localization of solutions, and controls the exploration versus exploitation tradeoff in active learning. We use the well-posed continuum limit of PWLL to rigorously analyze our method, and present experimental results on a number of graph-based image classification problems.
翻译:我们表明,只要不确定性的测量与基本模型和模型适当反映未勘探区域的不确定性,不确定性抽样就足以在基于图表的积极学习中实现勘探与开发。特别是,我们使用最近开发的算法 — — 分类器Poisson ReWeighted Laplace Learning(PWLL),我们引入了一种获取功能,以测量基于图表的分类器中的不确定性,从而确定数据中未勘探的区域。我们在PWLL中引入了二对角扰动,导致解决方案的指数化本地化,并控制积极学习中的勘探与开发的权衡。我们使用PWLL的精密连续限制来严格分析我们的方法,并对一些基于图表的图像分类问题提出实验性结果。