We present SImProv - a scalable image provenance framework to match a query image back to a trusted database of originals and identify possible manipulations on the query. SImProv consists of three stages: a scalable search stage for retrieving top-k most similar images; a re-ranking and near-duplicated detection stage for identifying the original among the candidates; and finally a manipulation detection and visualization stage for localizing regions within the query that may have been manipulated to differ from the original. SImProv is robust to benign image transformations that commonly occur during online redistribution, such as artifacts due to noise and recompression degradation, as well as out-of-place transformations due to image padding, warping, and changes in size and shape. Robustness towards out-of-place transformations is achieved via the end-to-end training of a differentiable warping module within the comparator architecture. We demonstrate effective retrieval and manipulation detection over a dataset of 100 million images.
翻译:我们推出了 SIMProv -- -- 一个可缩放图像出处框架, 将查询图像与可信任的原件数据库相匹配, 并识别查询中可能的操作操作。 SIMProv 由三个阶段组成: 一个可缩放搜索阶段, 用于检索最相似的图像; 一个重新排序和近乎复制的检测阶段, 用于在候选人中鉴别原始图像; 最后, 一个在查询中定位区域的操纵检测和可视化阶段, 可能已经被操纵, 与原始版本不同。 SIMProv 是一个强大到良性图像转换阶段, 在在线再分配中通常会发生这种转变, 例如由于噪音和再压缩降解造成的文物, 以及由于图像粘贴、 扭曲以及大小和形状变化造成的超位变换。 通过在比较器结构内对一个不同的扭曲模块进行端到端培训, 能够实现超位变换。 我们展示了对1 000万个图像数据集的有效检索和操纵检测 。