Recovering 3D phase features of complex, multiple-scattering biological samples traditionally sacrifices computational efficiency and processing time for physical model accuracy and reconstruction quality. This trade-off hinders the rapid analysis of living, dynamic biological samples that are often of greatest interest to biological research. Here, we overcome this bottleneck by combining annular intensity diffraction tomography (aIDT) with an approximant-guided deep learning framework. Using a novel physics model simulator-based learning strategy trained entirely on natural image datasets, we show our network can robustly reconstruct complex 3D biological samples of arbitrary size and structure. This approach highlights that large-scale multiple-scattering models can be leveraged in place of acquiring experimental datasets for achieving highly generalizable deep learning models. We devise a new model-based data normalization pre-processing procedure for homogenizing the sample contrast and achieving uniform prediction quality regardless of scattering strength. To achieve highly efficient training and prediction, we implement a lightweight 2D network structure that utilizes a multi-channel input for encoding the axial information. We demonstrate this framework's capabilities on experimental measurements of epithelial buccal cells and Caenorhabditis elegans worms. We highlight the robustness of this approach by evaluating dynamic samples on a living worm video, and we emphasize our approach's generalizability by recovering algae samples evaluated with different experimental setups. To assess the prediction quality, we develop a novel quantitative evaluation metric and show that our predictions are consistent with our experimental measurements and multiple-scattering physics.


翻译:重现复杂、多发生物样本的三维阶段特征,这些复杂、多发生物样本传统上牺牲计算效率和处理时间,以达到物理模型准确性和重建质量。这种权衡制妨碍了对生物研究最感兴趣的活生物动态样本的快速分析。在这里,我们克服了这一瓶颈,将废弃强度分解成色摄影机(AIDT)与一个相近的深层学习框架结合起来。我们利用完全以自然图像数据集为培训的新型物理模型模拟学习战略,展示了我们的网络能够强有力地重建复杂的三维生物样本,其中含有任意大小和结构的任意大小和结构。这种方法突出表明,大规模多发性多发生物样本可以用来获取实验数据集,以获得高度普及的深层学习模型。我们设计了一种新的基于模型的数据正常化前处理程序,将样本对比同质化,并实现统一的预测质量,而不管其强度如何分散。为了实现高效的培训和预测,我们实施了一种轻度的二维网络结构,利用多发网路的输入来校正的大小和结构信息。我们用这个框架的多发式多发式多发生物样本模型来评估。我们用来评估这个实验室的实验室的模型,我们用来评估了这个实验室的实验室的实验室的实验室的温度测量模型,我们用来评估。我们用来评估。 我们用这个实验室的实验室的实验室的实验室的实验室的测测测测测测测测测测测测测测测测测测测的实验室的实验室的实验室的实验室的实验室的实验室的实验室的实验室的实验室的温度的测测了我们测量的实验室的实验室的实验室的实验室的测测测测测测测测测测度。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
60+阅读 · 2020年3月19日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2020年2月5日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员