We focus on the problem of LiDAR point cloud based loop detection (or Finding) and closure (LDC) in a multi-agent setting. State-of-the-art (SOTA) techniques directly generate learned embeddings of a given point cloud, require large data transfers, and are not robust to wide variations in 6 Degrees-of-Freedom (DOF) viewpoint. Moreover, absence of strong priors in an unstructured point cloud leads to highly inaccurate LDC. In this original approach, we propose independent roll and pitch canonicalization of the point clouds using a common dominant ground plane. Discretization of the canonicalized point cloud along the axis perpendicular to the ground plane leads to an image similar to Digital Elevation Maps (DEMs), which exposes strong spatial priors in the scene. Our experiments show that LDC based on learnt embeddings of such DEMs is not only data efficient but also significantly more robust, and generalizable than the current SOTA. We report significant performance gain in terms of Average Precision for loop detection and absolute translation/rotation error for relative pose estimation (or loop closure) on Kitti, GPR and Oxford Robot Car over multiple SOTA LDC methods. Our encoder technique allows to compress the original point cloud by over 830 times. To further test the robustness of our technique we create and opensource a custom dataset called Lidar-UrbanFly Dataset (LUF) which consists of point clouds obtained from a LiDAR mounted on a quadrotor.
翻译:我们着眼于基于LiDAR点云的多智能体场景下的循环检测和闭合问题。现有的最优技术直接生成给定点云的学习嵌入,需要大量的数据传输,并且对六自由度视角的宽泛变化不够稳健。此外,无结构点云中缺乏强先验知识会导致高度不准确的循环检测和闭合。在这种新颖的方法中,我们提出了独立的横滚和俯仰规范化点云,使用共同的主要地面平面。沿着垂直于地面平面的轴对规范化的点云进行离散化,会导致类似于数字高程图(DEMs)的图像,这暴露了场景中的强空间先验。我们的实验表明,基于DEM的学习嵌入的循环检测和闭合不仅具有数据效率,而且比当前SOTA方法更加鲁棒和通用。我们报道了在Kitti、GPR和Oxford Robot Car上基于多个最优LDC方法的循环检测的平均精度和相对位姿估计(或循环闭合)的绝对平移/旋转误差的显着性能增益。我们的编码器技术允许将原始点云压缩830倍以上。为了进一步测试我们的技术的鲁棒性,我们创建并开源了一个定制的数据集,称为Lidar-UrbanFly 数据集(简称LUF),它由安装在四旋翼上的LiDAR获取的点云组成。