While model order reduction is a promising approach in dealing with multi-scale time-dependent systems that are too large or too expensive to simulate for long times, the resulting reduced order models can suffer from instabilities. We have recently developed a time-dependent renormalization approach to stabilize such reduced models. In the current work, we extend this framework by introducing a parameter that controls the time-decay of the memory of such models and optimally selecting this parameter based on limited fully resolved simulations. First, we demonstrate our framework on the inviscid Burgers equation whose solution develops a finite-time singularity. Our renormalized reduced order models are stable and accurate for long times while using for their calibration only data from a full order simulation before the occurrence of the singularity. Furthermore, we apply this framework to the 3D Euler equations of incompressible fluid flow, where the problem of finite-time singularity formation is still open and where brute force simulation is only feasible for short times. Our approach allows us to obtain for the first time a perturbatively renormalizable model which is stable for long times and includes all the complex effects present in the 3D Euler dynamics. We find that, in each application, the renormalization coefficients display algebraic decay with increasing resolution, and that the parameter which controls the time-decay of the memory is problem-dependent.


翻译:虽然减少模式订单是一种很有希望的办法,处理长期无法模拟的、过于庞大或过于昂贵的多尺度依赖时间的系统,但由此而来的减少顺序模型可能会受到不稳定性的影响。我们最近制定了一种依赖时间的重新整顿方法,以稳定这种减少的模型。在目前的工作中,我们通过引入一个参数来扩展这一框架,以控制这些模型的记忆时间淡化,并在有限的完全解决模拟的基础上最佳地选择这一参数。首先,我们展示了我们关于隐蔽的Burgerers方程式的框架,该方程式的解决方案发展了一个有限的时间奇特性。我们重新整顿的减少顺序模型在很长的时间里是稳定的和准确的,同时只使用在单一度出现之前从全顺序模拟中得出的数据来校准。此外,我们将这一框架应用到3D的抑制性流流等等方程式,在那里,定时的奇特性形成的问题在短期内才可行。我们的方法让我们第一次获得一个可反复调整的模型,在长期内存期间保持稳定,并且包括所有复杂的常态变变常态的模型,我们发现每个常态的常态的常态的常态的常态的常态变化。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员