In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a coarse grid and, thus, reduce the problems' size. When solving time-dependent problems, one can take advantage of the multiscale decomposition of the solution and perform temporal splitting by solving smaller-dimensional problems, which is studied in the paper. In the proposed approach, we consider the temporal splitting based on various low dimensional spatial approximations. Because a multiscale spatial splitting gives a "good" decomposition of the solution space, one can achieve an efficient implicit-explicit temporal discretization. We present a recently developed theoretical result in our earlier work and adopt it in this paper for multiscale problems. Numerical results are presented to demonstrate the efficiency of the proposed splitting algorithm.
翻译:在本文中,我们研究了多种规模问题的时间分割算法。 精确的细格空间问题通常要求自由程度的减少。 多尺度算法的设计是为了代表粗粗网格上的细小细节,从而缩小问题的规模。 当解决取决于时间的问题时,人们可以利用解决方案的多尺度分解,并通过解决本文中研究的较小层面问题来进行时间分割。 在拟议方法中,我们考虑了基于各种低维空间近似值的时间分割。因为多尺度空间分解会给解决方案空间带来“良好”分解,因此可以实现高效的隐含时间分解。我们在早期的工作中提出了一个最近形成的理论结果,并在本文中将其用于解决多尺度问题。 我们提出了数字结果,以证明拟议的分裂算法的效率。