We develop an efficient Deep Neural Network (DNN) approach, named DeepOPF, for solving alternative current optimal power flow (AC-OPF) problems. The idea is to train a DNN model to predict a set of independent operating variables and then directly compute the remaining dependable variables by solving the AC power flow equations. Such a 2-stage approach guarantees that the power-flow balance equations are satisfied. Meanwhile, the difficulty lies in ensuring that the obtained solutions respect generations' operation limits, voltages, and branch flows. We tackle this challenge by employing a penalty approach in training the DNN. We apply a zero-order optimization technique in the training algorithm to compute the penalty gradients efficiently. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy. Simulation results of IEEE test cases show the effectiveness of the penalty approach and that DeepOPF can speed up the computing time by up to 35$\times$ as compared to a state-of-the-art solver, at the expense of $<$0.1\% optimality loss.


翻译:我们开发了一个高效的深神经网络(DNN)方法,名为DeepOPF,用于解决当前最佳电流(AC-OPF)的替代问题。我们的想法是培训DNN模型,以预测一套独立的操作变量,然后通过解决AC电流方程式直接计算其余可靠的变量。这种两阶段方法保证了电流平衡方程式的满足。与此同时,困难在于确保获得的解决方案尊重代际操作限值、电压和分支流。我们通过在培训DNN时采用惩罚方法来应对这一挑战。我们在培训算法中采用了零顺序优化技术,以高效计算罚款梯度。我们进一步制定了根据预期的近似精确度调整DNN大小的条件。IEE测试案例的模拟结果表明了罚款法的有效性,而DeepOPF可以加快计算时间,比国家技术解决方案的解决者节省了35,000美元的时间,其成本为 < 0.1 ⁇ 最佳度损失。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
24+阅读 · 2020年4月3日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员