We study a family of numerical schemes applied to a class of multiscale systems of stochastic differential equations. When the time scale separation parameter vanishes, a well-known homogenization or Wong--Zakai diffusion approximation result states that the slow component of the considered system converges to the solution of a stochastic differential equation driven by a real-valued Wiener process, with Stratonovich interpretation of the noise. We propose and analyse schemes for effective approximation of the slow component. Such schemes satisfy an asymptotic preserving property and generalize the methods proposed in a recent article. We fill a gap in the analysis of these schemes and prove strong error estimates, which are uniform with respect to the time scale separation parameter.
翻译:我们研究一组适用于一组多尺度的随机差分方程式的数值方法。当时间尺度分离参数消失时,众所周知的同质化或Wong-Zakai扩散近似结果显示,被考虑的系统缓慢部分与由实际价值的Wiener进程驱动的随机差分方程式的解决方案相融合, Stratonovich对噪音的解释。我们提出并分析有效接近慢速方程式的系统方法。这种系统满足了无症状的保存属性,并概括了最近一篇文章中提议的方法。我们在分析这些系统时填补了一个空白,并证明有强烈的误差估计,这些误差估计与时间尺度分离参数是一致的。