This paper develops simple feed-forward neural networks that achieve the universal approximation property for all continuous functions with a fixed finite number of neurons. These neural networks are simple because they are designed with a simple, computable, and continuous activation function $\sigma$ leveraging a triangular-wave function and the softsign function. We first prove that $\sigma$-activated networks with width $36d(2d+1)$ and depth $11$ can approximate any continuous function on a $d$-dimensional hypercube within an arbitrarily small error. Hence, for supervised learning and its related regression problems, the hypothesis space generated by these networks with a size not smaller than $36d(2d+1)\times 11$ is dense in the continuous function space $C([a,b]^d)$ and therefore dense in the Lebesgue spaces $L^p([a,b]^d)$ for $p\in [1,\infty)$. Furthermore, we show that classification functions arising from image and signal classification are in the hypothesis space generated by $\sigma$-activated networks with width $36d(2d+1)$ and depth $12$ when there exist pairwise disjoint bounded closed subsets of $\mathbb{R}^d$ such that the samples of the same class are located in the same subset. Finally, we use numerical experimentation to show that replacing the rectified linear unit (ReLU) activation function by ours would improve the experiment results.


翻译:本文开发简单的向导神经网络, 为所有具有固定数量神经神经元的连续函数实现通用近似属性。 这些神经网络很简单, 因为它们的设计规模不小于36d( 2d+1) 。 因此, 这些神经网络的假设空间不小于36d( b+1) 。 我们首先证明, 宽度为 36d( 2d+1) $ 和深度为 111 的 $\ grama$ 激活网络 可以在任意小错误范围内的 $d( 美元+1) 超立方块上实现通用近似属性。 因此, 这些神经网络的假设空间不小于36d( 2d+1)\\ 时间 $\ gma$ 的连续激活功能 。 我们首先证明, $\ gmam$( +1) 的虚拟空间中的假设空间产生的假设空间会密度为 $C( a, b) 和 $36d_ ( b) 的连续运行空间中密度为$L_ d), 因此, 我们的直径直线域图解的图像和信号分解的网络会显示, 的平整数将显示 的平整数为 的平整数 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员