This paper develops simple feed-forward neural networks that achieve the universal approximation property for all continuous functions with a fixed finite number of neurons. These neural networks are simple because they are designed with a simple, computable, and continuous activation function $\sigma$ leveraging a triangular-wave function and the softsign function. We first prove that $\sigma$-activated networks with width $36d(2d+1)$ and depth $11$ can approximate any continuous function on a $d$-dimensional hypercube within an arbitrarily small error. Hence, for supervised learning and its related regression problems, the hypothesis space generated by these networks with a size not smaller than $36d(2d+1)\times 11$ is dense in the continuous function space $C([a,b]^d)$ and therefore dense in the Lebesgue spaces $L^p([a,b]^d)$ for $p\in [1,\infty)$. Furthermore, we show that classification functions arising from image and signal classification are in the hypothesis space generated by $\sigma$-activated networks with width $36d(2d+1)$ and depth $12$ when there exist pairwise disjoint bounded closed subsets of $\mathbb{R}^d$ such that the samples of the same class are located in the same subset. Finally, we use numerical experimentation to show that replacing the rectified linear unit (ReLU) activation function by ours would improve the experiment results.
翻译:本文开发简单的向导神经网络, 为所有具有固定数量神经神经元的连续函数实现通用近似属性。 这些神经网络很简单, 因为它们的设计规模不小于36d( 2d+1) 。 因此, 这些神经网络的假设空间不小于36d( b+1) 。 我们首先证明, 宽度为 36d( 2d+1) $ 和深度为 111 的 $\ grama$ 激活网络 可以在任意小错误范围内的 $d( 美元+1) 超立方块上实现通用近似属性。 因此, 这些神经网络的假设空间不小于36d( 2d+1)\\ 时间 $\ gma$ 的连续激活功能 。 我们首先证明, $\ gmam$( +1) 的虚拟空间中的假设空间产生的假设空间会密度为 $C( a, b) 和 $36d_ ( b) 的连续运行空间中密度为$L_ d), 因此, 我们的直径直线域图解的图像和信号分解的网络会显示, 的平整数将显示 的平整数为 的平整数 。