This paper is concerned with high moment and pathwise error estimates for fully discrete mixed finite element approximattions of stochastic Navier-Stokes equations with general additive noise. The implicit Euler-Maruyama scheme and standard mixed finite element methods are employed respectively for the time and space discretizations. High moment error estimates for both velocity and a time-avraged pressure approximations in strong $L^2$ and energy norms are obtained, pathwise error estimates are derived by using the Kolmogorov Theorem. Unlike their derterministic counterparts, the spatial error constants grow in the order of $O(k^{-\frac12})$, where $k$ denotes time step size. Numerical experiments are also provided to validate the error estimates and their sharpness.
翻译:本文所关注的是,对带有一般添加噪音的随机纳维埃-斯托克斯等式的完全离散混合有限元素的高度时间和路径错误估计,对时间和空间离散分别采用隐含的欧莱尔-马鲁山办法和标准混合元素方法,对速度和时间调整的压力近似值都进行了高时间错误估计,对高L2美元和能源标准都进行了高时间错误估计,通过使用Kolmogorov Theorem得出了路径错误估计。与对等方不同的是,空间错误常数以$O(k ⁇ -\frac12})为单位,以美元表示时间步数大小。还提供了数值实验,以验证错误估计及其精确度。