The state-space model and the Kalman filter provide us with unified and computationaly efficient procedure for computing the log-likelihood of the diverse type of time series models. This paper presents an algorithm for computing the gradient and the Hessian matrix of the log-likelihood by extending the Kalman filter without resorting to the numerical difference. Different from the previous paper(Kitagawa 2020), it is assumed that the observation noise variance R=1. It is known that for univariate time series, by maximizing the log-likelihood of this restricted model, we can obtain the same estimates as the ones for the original state-space model. By this modification, the algorithm for computing the gradient and the Hessian becomes somewhat complicated. However, the dimension of the parameter vector is reduce by one and thus has a significant merit in estimating the parameter of the state-space model especially for relatively low dimentional parameter vector. Three examples of nonstationary time seirres models, i.e., trend model, statndard seasonal adjustment model and the seasonal adjustment model with AR componet are presented to exemplified the specification of structural matrices.
翻译:州- 空间模型和 Kalman 过滤器为我们提供了计算不同类型时间序列模型的日志相似性的统一和计算高效的程序。 本文通过扩展 Kalman 过滤器而不必使用数值差异来计算渐变值和日志相似性赫森矩阵, 提供了计算日志相似性的一种算法。 与前一篇论文( 2020 年, 千兆瓦) 不同, 假设观测噪音差异R=1 。 众所周知, 在单轨时间序列中, 通过尽量扩大这一限制模式的日志相似性, 我们可以得到与最初的状态- 空间模型相同的估计值。 通过这一修改, 计算梯度和赫斯仪的算法变得有些复杂。 然而, 参数矢量的尺寸减少了1倍, 因而在估计州- 空间模型参数参数参数方面有很大的优点, 特别是相对较低的 dimentional 参数矢量。 三个非固定时间 seirres 模型的例子, 即趋势模型、 Statndard 季节性调整模型和与AR compet 结构矩阵的季节性调整模型, 演示了结构矩阵的规格。