Partial client participation has been widely adopted in Federated Learning (FL) to efficiently reduce the communication burden. However, an improper client sampling scheme will select unrepresentative subsets, which will cause a large variance in the model update and slows down the convergence. Existing sampling methods are either biased or can be further improved to accelerate the convergence. In this paper, we propose an unbiased sampling scheme, termed DELTA, to alleviate this problem. In particular, DELTA characterizes the impact of client diversity and local variance and samples the representative clients who carry valuable information for global model updates. Moreover, DELTA is a provably optimal unbiased sampling scheme that minimizes the variance caused by partial client participation and achieves better convergence than other unbiased sampling schemes. We corroborate our results with experiments on both synthetic and real data sets.
翻译:联邦学习联合会(FL)已广泛采用部分客户参与办法,以有效减少通信负担,不过,不适当的客户抽样办法将选择不具有代表性的子集,这将在模式更新方面造成很大的差异,并减缓趋同速度;现有的抽样方法有偏向性,或可以进一步改进,以加快趋同速度;在本文件中,我们提议采用称为DELTA的不偏不倚的抽样办法,以缓解这一问题;特别是,DELTA将客户多样性和当地差异的影响定性为特征,并对为全球模型更新提供宝贵信息的有代表性的客户进行抽样;此外,DELTA是一种可实现最佳最佳的、不偏袒的抽样办法,将部分客户参与造成的差异降至最低,并比其他不偏倚的抽样办法更趋同;我们用合成和真实数据集的实验来证实我们的成果。