Process discovery is one of the primary process mining tasks and starting point for process improvements using event data. Existing process discovery techniques aim to find process models that best describe the observed behavior. The focus can be on recall (i.e., replay fitness) or precision. Here, we take a different perspective. We aim to discover a process model that allows for the good behavior observed, and does not allow for the bad behavior. In order to do this, we assume that we have a desirable event log ($L^+$) and an undesirable event log ($L^-$). For example, the desirable event log consists of the cases that were handled within two weeks, and the undesirable event log consists of the cases that took longer. Our discovery approach explores the tradeoff between supporting the cases in the desirable event log and avoiding the cases in the undesirable event log. The proposed framework uses a new inductive mining approach that has been implemented and tested on several real-life event logs. Experimental results show that our approach outperforms other approaches that use only the desirable event log ($L^+$). This supports the intuitive understanding that problematic cases can and should be used to improve processes.
翻译:程序发现是使用事件数据改进过程的主要过程采矿任务之一和起点之一。 现有的过程发现技术旨在找到最能描述观察到的行为的流程模型。 重点可以放在回溯( 重弹健身) 或精确性上。 这里, 我们从不同的角度出发。 我们的目标是发现一个允许观察到的良好行为, 并且不允许不良行为的进程模型。 为了做到这一点, 我们假设我们有一个理想的事件日志( $ $ $ ) 和一个不受欢迎的事件日志($ $ $ $ ) 。 例如, 理想的事件日志包含两周内处理的案件, 而不良事件日志包含时间较长的案件。 我们的发现方法探索了在支持理想事件日志中的案件和避免不良事件日志中的案件之间的权衡。 拟议的框架使用了一种新的感应式采矿方法, 已经在若干实际生命事件日志上实施和测试了这种方法。 实验结果显示, 我们的方法比其他方法要优于只使用理想事件日志的方法( $ $ $ $ $ $ $ $ $ )。 这支持人们的直觉理解, 问题案例可以和应该用来改进过程。