Optimal control (OC) using inverse dynamics provides numerical benefits such as coarse optimization, cheaper computation of derivatives, and a high convergence rate. However, to take advantage of these benefits in model predictive control (MPC) for legged robots, it is crucial to handle efficiently its large number of equality constraints. To accomplish this, we first (i) propose a novel approach to handle equality constraints based on nullspace parametrization. Our approach balances optimality, and both dynamics and equality-constraint feasibility appropriately, which increases the basin of attraction to high-quality local minima. To do so, we (ii) modify our feasibility-driven search by incorporating a merit function. Furthermore, we introduce (iii) a condensed formulation of inverse dynamics that considers arbitrary actuator models. We also propose (iv) a novel MPC based on inverse dynamics within a perceptive locomotion framework. Finally, we present (v) a theoretical comparison of optimal control with forward and inverse dynamics and evaluate both numerically. Our approach enables the first application of inverse-dynamics MPC on hardware, resulting in state-of-the-art dynamic climbing on the ANYmal robot. We benchmark it over a wide range of robotics problems and generate agile and complex maneuvers. We show the computational reduction of our nullspace resolution and condensed formulation (up to 47.3%). We provide evidence of the benefits of our approach by solving coarse optimization problems with a high convergence rate (up to 10 Hz of discretization). Our algorithm is publicly available inside CROCODDYL.
翻译:使用反向动态的优化控制(OC)提供了数字效益,如粗优化、更廉价的衍生物计算和高趋同率等。然而,为了利用这些效益,利用模型预测控制(MPC)对脱腿机器人的模型预测控制(MPC)中的这些效益,必须高效地处理其大量平等制约。为了实现这一目标,我们首先(一) 提出一种新的方法,处理基于空空间对称的不平等制约;我们的方法适当地平衡最佳性和动态与平等限制的可行性,这增加了对高质量当地微型的吸引力。为此,我们(二) 通过纳入优点功能,修改我们以可行性驱动的搜索。此外,我们采用了(三) 压缩了考虑任意动作模型的逆向动态配置。我们还提议(四) 以感知性移动框架的反动动态为基础,提出新的MPC。 最后,我们提出了(五) 将最佳控制与前向和反向动态动态和反向动态兼容性的可行性进行理论比较。我们的方法使得在硬件上首次应用反动动的MPC,从而在状态对高效的轨道上产生高压的机器人升级的模型模型。我们内部的模型模型模型的升级的升级的模型模型的模型的模型,让我们的升级的模型的升级的模型的模型的升级化。