This article proposes a method to uncover opportunities for exploitation and exploration from consumer IoT interaction data. We develop a unique decomposition of cosine similarity that quantifies exploitation through functional similarity of interactions, exploration through cross-capacity similarity of counterfactual interactions, and differentiation of the two opportunities through within-similarity. We propose a topological data analysis method that incorporates these components of similarity and provides for their visualization. Functionally similar automations reveal exploitation opportunities for substitutes-in-use or complements-in-use, while exploration opportunities extend functionality into new use cases. This data-driven approach provides marketers with a powerful capability to discover possibilities for refining existing automation features while exploring new innovations. More generally, our approach can aid marketing efforts to balance these strategic opportunities in high technology contexts.
翻译:暂无翻译