In this work, we explore disparity estimation from a high number of views. We experimentally identify occlusions as a key challenge for disparity estimation for applications with high numbers of views. In particular, occlusions can actually result in a degradation in accuracy as more views are added to a dataset. We propose the use of a Welsch loss function for the data term in a global variational framework for disparity estimation. We also propose a disciplined warping strategy and a progressive inclusion of views strategy that can reduce the need for coarse to fine strategies that discard high spatial frequency components from the early iterations. Experimental results demonstrate that the proposed approach produces superior and/or more robust estimates than other conventional variational approaches.
翻译:在这项工作中,我们从大量的意见中探索差异估算。我们实验性地确定,对意见数量多的应用来说,排斥是差异估算的关键挑战。特别是,隔离实际上会导致准确性下降,因为更多的意见被添加到数据集中。我们提议在全球差异估算变异框架中对数据术语使用Welsch损失函数。我们还提出一项有纪律的扭曲策略,并逐步纳入观点策略,以减少粗糙到精细战略的需要,从而从早期的迭代中丢弃高空间频率成分。实验结果表明,拟议的方法产生比其他常规变异方法更优和/或更可靠的估计数。