Multi-view detection incorporates multiple camera views to alleviate occlusion in crowded scenes, where the state-of-the-art approaches adopt homography transformations to project multi-view features to the ground plane. However, we find that these 2D transformations do not take into account the object's height, and with this neglection features along the vertical direction of same object are likely not projected onto the same ground plane point, leading to impure ground-plane features. To solve this problem, we propose VFA, voxelized 3D feature aggregation, for feature transformation and aggregation in multi-view detection. Specifically, we voxelize the 3D space, project the voxels onto each camera view, and associate 2D features with these projected voxels. This allows us to identify and then aggregate 2D features along the same vertical line, alleviating projection distortions to a large extent. Additionally, because different kinds of objects (human vs. cattle) have different shapes on the ground plane, we introduce the oriented Gaussian encoding to match such shapes, leading to increased accuracy and efficiency. We perform experiments on multiview 2D detection and multiview 3D detection problems. Results on four datasets (including a newly introduced MultiviewC dataset) show that our system is very competitive compared with the state-of-the-art approaches. %Our code and data will be open-sourced.Code and MultiviewC are released at https://github.com/Robert-Mar/VFA.


翻译:多视图探测包含多个相机视图,以缓解拥挤的场景中的封闭性。 在拥挤的场景中, 最先进的场景方法采用同质转换, 将多视图特性投射到地面平面上。 然而, 我们发现, 这些二维转换不考虑天体的高度, 而随着同一天体垂直方向的这种忽略特征, 可能不会投射到同一个地面平面点上, 导致地面平面特征不纯化。 为了解决这个问题, 我们提议 VFA, 将3D 特性混成为一体, 以便在多视图探测中进行特征转换和集成。 具体地说, 我们将3D 空间的3D 空间进行反毒转换, 将 voxel 投射到每个摄像视图上, 并将 2D 特性与这些预测的 voxels 相连接。 这样, 我们就可以在相同的垂直线上识别并集 2D 的 2D 特征, 将不同种类的物体( 人类对牛群), 我们引入了面向高斯/ 的编码来匹配这些形状, 提高准确度和效率。 我们在多维维的系统上进行实验 2D 将显示多维数据 3D 的多维 数据查看 显示 。 我们的系统将显示 将显示的多维的多维数据显示的数据 。 将显示 的多维 显示的多维 将显示的数据 。

0
下载
关闭预览

相关内容

3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
6+阅读 · 2021年11月12日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
11+阅读 · 2019年4月15日
Object Relation Detection Based on One-shot Learning
Arxiv
3+阅读 · 2018年7月16日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
相关论文
Arxiv
6+阅读 · 2021年11月12日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
11+阅读 · 2019年4月15日
Object Relation Detection Based on One-shot Learning
Arxiv
3+阅读 · 2018年7月16日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员