With the fast development of Deep Learning techniques, Named Entity Recognition (NER) is becoming more and more important in the information extraction task. The greatest difficulty that the NER task faces is to keep the detectability even when types of NE and documents are unfamiliar. Realizing that the specificity information may contain potential meanings of a word and generate semantic-related features for word embedding, we develop a distribution-aware word embedding and implement three different methods to make use of the distribution information in a NER framework. And the result shows that the performance of NER will be improved if the word specificity is incorporated into existing NER methods.


翻译:随着深层学习技术的快速发展,命名实体识别(NER)在信息提取任务中变得越来越重要。净化任务面临的最大困难是即使在不熟悉NE和文件类型的情况下也要保持可探测性。认识到具体信息可能包含一个单词的潜在含义,并产生词嵌入的语义相关特征,我们开发了一个有分布意识的单词嵌入,并采用三种不同方法在净化框架内使用发布信息。结果显示,如果将单词特性纳入现有的净化方法,净化的性能将得到改善。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2021年3月25日
【CVPR2021】细粒度多标签分类
专知会员服务
61+阅读 · 2021年3月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
一文读懂命名实体识别
人工智能头条
32+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2021年6月3日
Arxiv
5+阅读 · 2019年11月22日
Multi-Grained Named Entity Recognition
Arxiv
6+阅读 · 2019年6月20日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
一文读懂命名实体识别
人工智能头条
32+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员