There is a recent interest in investigating few-shot NER, where the low-resource target domain has different label sets compared with a resource-rich source domain. Existing methods use a similarity-based metric. However, they cannot make full use of knowledge transfer in NER model parameters. To address the issue, we propose a template-based method for NER, treating NER as a language model ranking problem in a sequence-to-sequence framework, where original sentences and statement templates filled by candidate named entity span are regarded as the source sequence and the target sequence, respectively. For inference, the model is required to classify each candidate span based on the corresponding template scores. Our experiments demonstrate that the proposed method achieves 92.55% F1 score on the CoNLL03 (rich-resource task), and significantly better than fine-tuning BERT 10.88%, 15.34%, and 11.73% F1 score on the MIT Movie, the MIT Restaurant, and the ATIS (low-resource task), respectively.
翻译:最近有人有兴趣调查几发NER, 即低资源目标域与资源丰富的源域相比有不同的标签组。 现有方法使用类似的衡量标准。 但是,它们无法充分利用NER模型参数的知识转让。 为了解决这个问题,我们提议了一种基于模板的NER方法,将NER作为按顺序排列框架中的语言模式排序问题处理,将候选人姓名实体填充的原句子和声明模板分别视为源序列和目标序列。关于推论,该模型需要根据相应的模板评分对每个候选人的频度进行分类。我们的实验表明,拟议方法在CONLLL03(丰富资源任务)上分别取得了92.55%的F1分,大大高于对BERT 10.88%、15.34 % 和 11.73% F1分的微调,分别是麻省理工学院电影、麻省理工学院和ATIS(低资源任务)的评分。