This paper develops a Distributed Differentiable Dynamic Game (D3G) framework, which enables learning multi-robot coordination from demonstrations. We represent multi-robot coordination as a dynamic game, where the behavior of a robot is dictated by its own dynamics and objective that also depends on others' behavior. The coordination thus can be adapted by tuning the objective and dynamics of each robot. The proposed D3G enables each robot to automatically tune its individual dynamics and objectives in a distributed manner by minimizing the mismatch between its trajectory and demonstrations. This learning framework features a new design, including a forward-pass, where all robots collaboratively seek Nash equilibrium of a game, and a backward-pass, where gradients are propagated via the communication graph. We test the D3G in simulation with two types of robots given different task configurations. The results validate the capability of D3G for learning multi-robot coordination from demonstrations.
翻译:本文提出了一种分布式可微动态游戏(D3G)框架,可以从示范中学习多机器人协调。我们将多机器人协调表示为一种动态博弈,在这种博弈中,机器人的行为由自身动态和目标所决定,同时还取决于其他机器人的行为。因此,协调可以通过调整每个机器人的目标和动态来进行。所提出的D3G允许每个机器人通过最小化其轨迹和示范之间的不匹配来分布式自动调整其单独的动态和目标。该学习框架具有新的设计,其中包括一个前向传递,在该传递中,所有机器人协作寻找游戏的纳什均衡,并且一个反向传递,在该传递中,梯度通过通信图传播。我们在两种类型的机器人上测试了D3G,并给出不同的任务配置。结果验证了D3G从示范中学习多机器人协调的能力。