The use of autoencoders for shape generation and editing suffers from manipulations in latent space that may lead to unpredictable changes in the output shape. We present an autoencoder-based method that enables intuitive shape editing in latent space by disentangling latent sub-spaces to obtain control points on the surface and style variables that can be manipulated independently. The key idea is adding a Lipschitz-type constraint to the loss function, i.e. bounding the change of the output shape proportionally to the change in latent space, leading to interpretable latent space representations. The control points on the surface can then be freely moved around, allowing for intuitive shape editing directly in latent space. We evaluate our method by comparing it to state-of-the-art data-driven shape editing methods. Besides shape manipulation, we demonstrate the expressiveness of our control points by leveraging them for unsupervised part segmentation.
翻译:使用自动编码器进行形状生成和编辑,受到潜在空间的操纵,可能导致输出形状发生不可预测的变化。我们展示了一种基于自动编码器的方法,通过拆分潜潜潜的子空间,在潜空进行直观的形状编辑,以获得可独立操作的表面和样式变量的控制点。关键的想法是给损失功能添加一个 Lipschitz 类型的限制,即将输出形状的变化与潜空的变化成比例地捆绑在一起,导致可解释的潜在空间显示。然后,表面的控制点可以自由移动,允许在潜空直接进行直观的形状编辑。我们通过将其与最先进的数据驱动的形状编辑方法进行比较来评估我们的方法。除了形状操纵外,我们通过利用这些控制点进行不受监控的部分分割来显示我们控制点的清晰度。