Probabilistic sensitivity analysis identifies the influential uncertain input to guide decision-makings. We propose a general sensitivity framework with respect to input distribution parameters that unifies a wide range of sensitivity measures, including information theoretical metrics such as the Fisher information. The framework is derived analytically via a constrained maximization and the sensitivity analysis is reformulated into an eigenvalue problem. There are only two main steps to implement the sensitivity framework utilising the likelihood ratio/score function method, a Monte Carlo type sampling followed by solving an eigenvalue equation. The resulted eigenvectors then provide the directions for simultaneous variations of the input parameters and guide the focus to perturb uncertainty the most. Not only is it conceptually simple, numerical examples demonstrate that the proposed framework also provides new sensitivity insights, such as the combined sensitivity of multiple correlated uncertainty metrics, robust sensitivity analysis with a entropic constraint and approximation of deterministic sensitivities.
翻译:概率敏感度分析确定了用于指导决策的具有影响力的不确定投入。我们提出了一个关于投入分配参数的一般性敏感度框架,该框架统一了多种敏感度措施,包括渔业信息等信息理论衡量尺度。框架通过有限最大化分析得出,敏感度分析又重新拟订成一个电子价值问题。只有两个主要步骤来执行敏感度框架,利用可能性比率/核心功能方法,即蒙特卡洛类型抽样,然后解决一个电子价值方程。结果的精子为输入参数的同步变化提供方向,并指导对不确定性进行最集中的审视。不仅在概念上简单,数字实例表明拟议框架还提供了新的敏感度洞察力,例如多重相关不确定性指标的综合敏感性、具有昆虫制约和确定性敏感性近似的可靠敏感度分析。