We consider the class of inverse probability weight (IPW) estimators, including the popular Horvitz-Thompson and Hajek estimators used routinely in survey sampling, causal inference and evidence estimation for Bayesian computation. We focus on the 'weak paradoxes' for these estimators due to two counterexamples by Basu [1988] and Wasserman [2004] and investigate the two natural Bayesian answers to this problem: one based on binning and smoothing : a 'Bayesian sieve' and the other based on a conjugate hierarchical model that allows borrowing information via exchangeability. We compare the mean squared errors for the two Bayesian estimators with the IPW estimators for Wasserman's example via simulation studies on a broad range of parameter configurations. We also prove posterior consistency for the Bayes estimators under missing-completely-at-random assumption and show that it requires fewer assumptions on the inclusion probabilities. We also revisit the connection between the different problems where improved or adaptive IPW estimators will be useful, including survey sampling, evidence estimation strategies such as Conditional Monte Carlo, Riemannian sum, Trapezoidal rules and vertical likelihood, as well as average treatment effect estimation in causal inference.
翻译:我们考虑反概率体重(IPW)的测算器类别,包括调查抽样、因果推断和巴伊西亚计算证据估计中常用的流行的Horvitz-Thompson和Hajek测算器。我们注重巴苏[1988]和瓦瑟曼[2004]的两个反比样本对这些估测器的“微弱悖论 ” 。我们还证明了巴伊斯测算器在错位和平滑的假设下对该问题的两个自然贝叶斯测算器的前后一致性:一个是“贝耶西亚筛选”,另一个是基于一个能够通过互换性来借取信息的交替等级模型。我们通过模拟研究对巴伊斯测算器的测算器和瓦瑟曼的测算器的“微正方差”等例子进行比较。我们还证明了巴伊斯测算器在缺失的完全随机假设下对贝亚斯测算器的外一致性,并表明对包容概率的假设要求更少。我们还审视了巴伊斯测算器中改进或适应性 IPW测算器平均估测算法规则作为高级估测算法的各种不同问题之间的联系,包括测算器的测算法和测算法的测算法。