Point source detection at low signal-to-noise is challenging for astronomical surveys, particularly in radio interferometry images where the noise is correlated. Machine learning is a promising solution, allowing the development of algorithms tailored to specific telescope arrays and science cases. We present DeepSource - a deep learning solution - that uses convolutional neural networks to achieve these goals. DeepSource enhances the Signal-to-Noise Ratio (SNR) of the original map and then uses dynamic blob detection to detect sources. Trained and tested on two sets of 500 simulated 1 deg x 1 deg MeerKAT images with a total of 300,000 sources, DeepSource is essentially perfect in both purity and completeness down to SNR = 4 and outperforms PyBDSF in all metrics. For uniformly-weighted images it achieves a Purity x Completeness (PC) score at SNR = 3 of 0.73, compared to 0.31 for the best PyBDSF model. For natural-weighting we find a smaller improvement of ~40% in the PC score at SNR = 3. If instead we ask where either of the purity or completeness first drop to 90%, we find that DeepSource reaches this value at SNR = 3.6 compared to the 4.3 of PyBDSF (natural-weighting). A key advantage of DeepSource is that it can learn to optimally trade off purity and completeness for any science case under consideration. Our results show that deep learning is a promising approach to point source detection in astronomical images.


翻译:低信号到噪音的低信号到噪音的源点检测对天文测量具有挑战性,特别是在噪音相关的无线电干涉测量图像中。机器学习是一个很有希望的解决方案,可以开发适合特定望远镜阵列和科学案例的算法。 我们展示深源 — 一个深学习的解决方案 — 利用进化神经网络实现这些目标。 深源可以提高原始地图信号到噪音比率(SNR)的信号到噪音比率(SNR)为3,而最佳的PyBDSF模式为0.31。 用于深度测量的两组500个模拟的1 deg x 1 deg MeerKAT图像(共30万个来源)的培训和测试。 深源在纯度和完整性方面基本上完美无缺,可以降低到SNR=4, 超越所有度的PyBDSFF值。 对于统一重量的图像来说,SNR的纯度为3,而对于最佳的比值为0.31。对于最佳PBSF值而言,我们发现在深度点上的PC评分为~40% =3。如果我们在深度的准确度中找到一个最精确的SIS的SFIL 学到最精确的排序。

0
下载
关闭预览

相关内容

【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
56+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
3D-LaneNet: end-to-end 3D multiple lane detection
Arxiv
7+阅读 · 2018年11月26日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
56+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员