For tasks where the dynamics of multiple agents are physically coupled, e.g., in cooperative manipulation, the coordination between the individual agents becomes crucial, which requires exact knowledge of the interaction dynamics. This problem is typically addressed using centralized estimators, which can negatively impact the flexibility and robustness of the overall system. To overcome this shortcoming, we propose a novel distributed learning framework for the exemplary task of cooperative manipulation using Bayesian principles. Using only local state information each agent obtains an estimate of the object dynamics and grasp kinematics. These local estimates are combined using dynamic average consensus. Due to the strong probabilistic foundation of the method, each estimate of the object dynamics and grasp kinematics is accompanied by a measure of uncertainty, which allows to guarantee a bounded prediction error with high probability. Moreover, the Bayesian principles directly allow iterative learning with constant complexity, such that the proposed learning method can be used online in real-time applications. The effectiveness of the approach is demonstrated in a simulated cooperative manipulation task.


翻译:对于多种物剂的动态是实际结合在一起的任务,例如,在合作操纵中,个别物剂之间的协调变得至关重要,这需要确切了解相互作用的动态。这个问题通常通过集中的测算器来解决,这可能会对整个系统的灵活性和稳健性产生消极影响。为了克服这一缺陷,我们提议为利用贝叶斯原则进行合作操纵的示范性任务建立一个新颖的分布式学习框架。每个物剂仅使用当地的国家信息,就能估计物体的动态和掌握运动学。这些地方性估计是使用动态平均共识加以结合的。由于这种方法具有很强的概率基础,对物体动态和掌握运动学的每一项估计都伴随着一种不确定性的测量,从而能够保证极有可能发生受约束的预测错误。此外,巴伊斯原则直接允许不断复杂地进行互动学习,这样就可以在实时应用中使用拟议的学习方法。该方法的有效性表现在模拟合作操纵任务中。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
5+阅读 · 2020年6月16日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员