Few-shot dataset generalization is a challenging variant of the well-studied few-shot classification problem where a diverse training set of several datasets is given, for the purpose of training an adaptable model that can then learn classes from new datasets using only a few examples. To this end, we propose to utilize the diverse training set to construct a universal template: a partial model that can define a wide array of dataset-specialized models, by plugging in appropriate components. For each new few-shot classification problem, our approach therefore only requires inferring a small number of parameters to insert into the universal template. We design a separate network that produces an initialization of those parameters for each given task, and we then fine-tune its proposed initialization via a few steps of gradient descent. Our approach is more parameter-efficient, scalable and adaptable compared to previous methods, and achieves the state-of-the-art on the challenging Meta-Dataset benchmark.
翻译:少见的数据集概括化是一个具有挑战性的变体,它是一个经过深思熟虑的微小分类问题,提供由若干数据集组成的多种培训组,目的是培训一个适应性强的模式,然后仅使用几个例子从新的数据集中学习课程。为此,我们提议利用多样化的培训组来构建一个通用模板:一个部分模型,通过插插插适当组件,可以定义范围广泛的数据集专门模型。因此,对于每一个新的微小分类问题,我们的方法只需要推算少量参数即可插入通用模板。我们设计一个单独的网络,为每个特定任务提供这些参数的初始化,然后通过几步梯度下降来微调其拟议的初始化。我们的方法比以往的方法更具有参数效率、可缩放性和适应性,并实现具有挑战性的Meta-Dataset基准方面的最新技术。