Semi-definite programs represent a frontier of efficient computation. While there has been much progress on semi-definite optimization, with moderate-sized instances currently solvable in practice by the interior-point method, the basic problem of sampling semi-definite solutions remains a formidable challenge. The direct application of known polynomial-time algorithms for sampling general convex bodies to semi-definite sampling leads to a prohibitively high running time. In addition, known general methods require an expensive rounding phase as pre-processing. Here we analyze the Dikin walk, by first adapting it to general metrics, then devising suitable metrics for the PSD cone with affine constraints. The resulting mixing time and per-step complexity are considerably smaller, and by an appropriate choice of the metric, the dependence on the number of constraints can be made polylogarithmic. We introduce a refined notion of self-concordant matrix functions and give rules for combining different metrics. Along the way, we further develop the theory of interior-point methods for sampling.
翻译:暂无翻译