In this paper, we study the weighted stochastic matching problem. Let $G=(V, E)$ be a given edge-weighted graph and let its realization $\mathcal{G}$ be a random subgraph of $G$ that includes each edge $e\in E$ independently with a known probability $p_e$. The goal in this problem is to pick a sparse subgraph $Q$ of $G$ without prior knowledge of $G$'s realization, such that the maximum weight matching among the realized edges of $Q$ (i.e. the subgraph $Q\cap \mathcal{G}$) in expectation approximates the maximum weight matching of the entire realization $\mathcal{G}$. Attaining any constant approximation ratio for this problem requires selecting a subgraph of max-degree $\Omega(1/p)$ where $p=\min_{e\in E} p_e$. On the positive side, there exists a $(1-\epsilon)$-approximation algorithm by Behnezhad and Derakhshan, albeit at the cost of max-degree having exponential dependence on $1/p$. Within the $\text{poly}(1/p)$ regime, however, the best-known algorithm achieves a $0.536$ approximation ratio due to Dughmi, Kalayci, and Patel improving over the $0.501$ approximation algorithm by Behnezhad, Farhadi, Hajiaghayi, and Reyhani. In this work, we present a 0.68 approximation algorithm with $O(1/p)$ queries per vertex, which is asymptotically tight. This is even an improvement over the best-known approximation ratio of $2/3$ for unweighted graphs within the $\text{poly}(1/p)$ regime due to Assadi and Bernstein. The $2/3$ approximation ratio is proven tight in the presence of a few correlated edges in $\mathcal{G}$, indicating that surpassing the $2/3$ barrier should rely on the independent realization of edges. Our analysis involves reducing the problem to designing a randomized matching algorithm on a given stochastic graph with some variance-bounding properties.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月8日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 1月8日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员