Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the Streaming Tensor Train Approximation (STTA), a new class of algorithms for approximating a given tensor $\mathcal T$ in the tensor train format. STTA accesses $\mathcal T$ exclusively via two-sided random sketches of the original data, making it streamable and easy to implement in parallel -- unlike existing deterministic and randomized tensor train approximations. This property also allows STTA to conveniently leverage structure in $\mathcal T$, such as sparsity and various low-rank tensor formats, as well as linear combinations thereof. When Gaussian random matrices are used for sketching, STTA is admissible to an analysis that builds and extends upon existing results on the generalized Nystr\"om approximation for matrices. Our results show that STTA can be expected to attain a nearly optimal approximation error if the sizes of the sketches are suitably chosen. A range of numerical experiments illustrates the performance of STTA compared to existing deterministic and randomized approaches.
翻译:Tensor 列车是压缩和处理高维数据和功能的多功能工具。 在这项工作中,我们引入了Straming Tensor 列车匹配(STTA), 这是一种新的算法, 用于以高压列格式对一个给定的 Exronor $\ mathcal T$ 进行匹配。 STTA 完全通过原始数据的双面随机草图访问$\ mathcal T$, 这使得它可以流动并易于平行执行 -- -- 不同于现有的确定性和随机化的 Exronor 列车近似值。 此属性还允许STTA 以$\ mathcal T$ 方便的杠杆结构, 如宽度和各种低调调格式, 以及其线性组合 。 当 Gausian 随机矩阵用于素描时, STTA 时, 可以进行一项分析, 该分析将基于和扩展现有的通用 Nystr\\"om om impressor 。 我们的结果显示, 如果草图的大小被正确选择,, STTA 可以预期会达到近似差近差近差近。