Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement in the coded aperture snapshot spectral imaging (CASSI) system. The HSI representations are highly similar and correlated across the spectral dimension. Modeling the inter-spectra interactions is beneficial for HSI reconstruction. However, existing CNN-based methods show limitations in capturing spectral-wise similarity and long-range dependencies. Besides, the HSI information is modulated by a coded aperture (physical mask) in CASSI. Nonetheless, current algorithms have not fully explored the guidance effect of the mask for HSI restoration. In this paper, we propose a novel framework, Mask-guided Spectral-wise Transformer (MST), for HSI reconstruction. Specifically, we present a Spectral-wise Multi-head Self-Attention (S-MSA) that treats each spectral feature as a token and calculates self-attention along the spectral dimension. In addition, we customize a Mask-guided Mechanism (MM) that directs S-MSA to pay attention to spatial regions with high-fidelity spectral representations. Extensive experiments show that our MST significantly outperforms state-of-the-art (SOTA) methods on simulation and real HSI datasets while requiring dramatically cheaper computational and memory costs.
翻译:超光谱图像(HSI)重建的目的是从编码孔径快照光谱成像(CASSI)系统中的2D测量中恢复3D空间光谱信号。HSI的表示方式在光谱方面非常相似,而且在整个光谱方面相互关联。模拟频谱间相互作用有利于HSI的重建。但是,现有的CNN方法显示在捕捉光谱相似性和长距离依赖性方面存在局限性。此外,HSI信息由CASSI中的编码孔径(物理面罩)调节。尽管如此,目前的算法尚未充分探索HSI恢复面具的指导效果。在本文件中,我们提出了一个新的框架,为HSI的重建而采用MST(MST)制面具制导光谱光谱变异变器(MST)。具体地说,我们提出了一个光谱多头自控(S-MSA)方法,将每个光谱特征作为象征,并计算光谱层面的自留量值。此外,我们定制了制面具机制(MMMMA)引导SMAA对S-MSA的注意,同时以高空间空间-光谱模型模型显示我们高空间-空间-SAS-SAS-级的模型模拟的模型显示,而高空间-SAS-摩地显示,高空间-SISAS-SEA的M-C-SL-C-SAS-SAS-S-S-SB-S-S-S-S-S-S-S-C-C-S-S-S-S-S-S-S-S-SL-C-SL-C-C-C-SL-CL-SL-C-C-C-C-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-S-S-S-SD-C-C-SL-SBAR-SL-SL-SL-SL-S-S-SB-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-S-S-S