Novel Class Discovery (NCD) is a learning paradigm, where a machine learning model is tasked to semantically group instances from unlabeled data, by utilizing labeled instances from a disjoint set of classes. In this work, we first characterize existing NCD approaches into single-stage and two-stage methods based on whether they require access to labeled and unlabeled data together while discovering new classes. Next, we devise a simple yet powerful loss function that enforces separability in the latent space using cues from multi-dimensional scaling, which we refer to as Spacing Loss. Our proposed formulation can either operate as a standalone method or can be plugged into existing methods to enhance them. We validate the efficacy of Spacing Loss with thorough experimental evaluation across multiple settings on CIFAR-10 and CIFAR-100 datasets.
翻译:新类发现(NCD)是一种学习模式,在这个模式中,一个机器学习模型的任务是利用一组脱节的类别中的标签实例,利用一组脱节类别中的标签实例,从未贴标签的数据中将实例进行静态分组。在这项工作中,我们首先将现有的NCD方法定性为单阶段和两阶段方法,其依据是它们是否需要在发现新类别的同时一起访问标签和未贴标签的数据。接下来,我们设计一个简单而强大的损失功能,利用多维缩放的信号(我们称之为 " 间距损失 " )在潜伏空间中实施分离。我们提议的配方可以作为一种独立的方法运作,或者可以插入到现有的方法中加以强化。我们在CIFAR-10和CIFAR-100数据集的多个设置中,通过彻底的实验评估来验证Space损失的功效。