Recent studies have demonstrated that gradient matching-based dataset synthesis, or dataset condensation (DC), methods can achieve state-of-the-art performance when applied to data-efficient learning tasks. However, in this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset. We attribute this to the lack of participation of the contrastive signals between the classes resulting from the class-wise gradient matching strategy. To address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level warm-up strategy to stabilize the optimization. Our experimental results indicate that while the existing methods are ineffective for fine-grained image classification tasks, the proposed method can successfully generate informative synthetic datasets for the same tasks. Moreover, we demonstrate that the proposed method outperforms the baselines even on benchmark datasets such as SVHN, CIFAR-10, and CIFAR-100. Finally, we demonstrate the high applicability of the proposed method by applying it to continual learning tasks.
翻译:最近的研究表明,基于梯度的匹配数据集合成,或数据集凝聚(DC)方法,在应用于数据效率高的学习任务时,可以达到最先进的性能;然而,在本研究中,我们证明,当与任务相关的信息构成培训数据集的一个重要部分时,现有的DC方法可以比随机选择方法更差;我们将此归因于由于等级梯度匹配战略导致的类别之间差异信号缺乏参与;为解决这一问题,我们提议采用与对比信号的数据集压缩(DCC),办法是修改损失函数,使DC方法能够有效捕捉不同班级的差异;此外,我们通过跟踪内核速度,分析培训动态方面的新损失功能;此外,我们引入双级暖化战略以稳定优化。我们的实验结果表明,虽然现有方法对细微的图像分类任务无效,但拟议的方法能够成功地生成相同任务所需的信息性合成数据集。此外,我们证明,拟议的方法甚至超越了基准数据基准基准基准基准基准基准,甚至超越了用于跟踪系统-10的基线,例如SH-N-10号系统,最后通过不断学习方法,我们提议的CIR-10号系统,以不断学习的方式展示其基准。