Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA on various downstream tasks. The graph augmentation step is a vital but scarcely studied step of GCL. In this paper, we show that the node embedding obtained via the graph augmentations is highly biased, somewhat limiting contrastive models from learning discriminative features for downstream tasks.Thus, instead of investigating graph augmentation in the input space, we alternatively propose to perform augmentations on the hidden features (feature augmentation). Inspired by so-called matrix sketching, we propose COSTA, a novel COvariance-preServing feaTure space Augmentation framework for GCL, which generates augmented features by maintaining a ``good sketch'' of original features. To highlight the superiority of feature augmentation with COSTA, we investigate a single-view setting (in addition to multi-view one) which conserves memory and computations. We show that the feature augmentation with COSTA achieves comparable/better results than graph augmentation based models.
翻译:图形对比学习( GCL) 改进图形代表学习, 导致 SOTA 执行各种下游任务。 图形增强步骤是 GCL 至关重要但很少研究的一步 。 在本文中, 我们显示, 通过图形增强获得的节点嵌入高度偏差, 从学习下游任务歧视特征的对比模型上有些限制。 因此, 我们不研究输入空间中的图形增强, 而是建议对隐藏特性( 功能增强) 进行增强。 在所谓的矩阵草图的启发下, 我们提议 COSTA, 是一个全新的 GCL COVariance- 预服务前空间增强框架, 它通过保持原始特征的“ 良好草图” 产生增强的特性。 为了突出特征增强与 COSTA 的优势, 我们调查一个保存记忆和计算的单一视图设置( 除多视图之一之外) 。 我们显示, 与 CSTA 的特性增强比图形增强模型取得可比/ 更好的结果 。