Generative Adversarial Networks have got the researchers' attention due to their state-of-the-art performance in generating new images with only a dataset of the target distribution. It has been shown that there is a dissimilarity between the spectrum of authentic images and fake ones. Since the Fourier transform is a bijective mapping, saying that the model has a significant problem in learning the original distribution is a fair conclusion. In this work, we investigate the possible reasons for the mentioned drawback in the architecture and mathematical theory of the current GANs. Then we propose a new model to reduce the discrepancies between the spectrum of the actual and fake images. To that end, we design a brand new architecture for the frequency domain using the blueprint of geometric deep learning. Then, we experimentally show promising improvements in the quality of the generated images by considering the Fourier domain representation of the original data as a principal feature in the training process.
翻译:由于研究人员在制作新图像方面表现最先进,只提供目标分布的数据集,因此他们已经注意到了产生Adversarial Networks。 事实证明,真实图像的频谱与假图像的频谱存在差异。 Fourier变换是一种双向映射,表示模型在了解原始分布方面存在重大问题,这是一个公平的结论。 在这项工作中,我们调查了在目前的GANs的架构和数学理论中出现上述缺陷的可能原因。 然后,我们提出了一个新的模型,以减少实际图像和假图像的频谱之间的差异。 为此,我们利用测深深度学习的蓝图为频率域设计了一个新的品牌结构。 然后,我们通过将原始数据在Fourier域的表述作为培训过程中的一个主要特征,实验性地展示了生成图像质量的有希望的改善。