Client contribution evaluation, also known as data valuation, is a crucial approach in federated learning(FL) for client selection and incentive allocation. However, due to restrictions of accessibility of raw data, only limited information such as local weights and local data size of each client is open for quantifying the client contribution. Using data size from available information, we introduce an empirical evaluation method called Federated Client Contribution Evaluation through Accuracy Approximation(FedCCEA). This method builds the Accuracy Approximation Model(AAM), which estimates a simulated test accuracy using inputs of sampled data size and extracts the clients' data quality and data size to measure client contribution. FedCCEA strengthens some advantages: (1) enablement of data size selection to the clients, (2) feasible evaluation time regardless of the number of clients, and (3) precise estimation in non-IID settings. We demonstrate the superiority of FedCCEA compared to previous methods through several experiments: client contribution distribution, client removal, and robustness test to partial participation.
翻译:客户贡献评价,也称为数据评价,是客户选择和奖励分配的联邦学习(FL)的关键方法,但是,由于原始数据的可获取性受到限制,只有有限的信息,如每个客户的当地加权数和当地数据大小,才能对客户贡献进行量化;利用现有信息的数据大小,我们采用了一种经验评价方法,称为 " 通过准确性近似评估联邦客户贡献评价 " (FedCCEA),这种方法构建了 " 准确性匹配模型 " (AAM),该模型利用抽样数据大小的投入来估计模拟测试准确性,并提取客户数据质量和数据大小,以衡量客户贡献;美联储加强了一些优势:(1) 使客户能够选择数据大小,(2) 不论客户人数多少,可行的评价时间,(3) 在非IID环境中准确估计。 我们通过几个实验,即客户贡献分布、客户清除和稳健度测试,以部分参与,展示了美联储相对于以往方法的优越性。