An increasingly popular method for computing aggregate statistics while preserving users' privacy is local differential privacy (LDP). Under this model, users perturb their data before sending it to an untrusted central party to be processed. Key value data is a naturally occurring data type that has not been thoroughly investigated in the local trust model. Existing LDP solutions for computing statistics over key value data suffer from the inherent accuracy limitations of each user adding their own noise. Multi-party computation (MPC) is a common alternative to LDP that removes the requirement for a trusted central party while maintaining accuracy; however, naively applying MPC to key value data results in prohibitively expensive computation costs. In this work, we present selective multi-party computation, a novel approach to distributed computation that leverages DP leakage to efficiently and accurately compute statistics over key value data. We show that our protocol satisfies pure DP and is provably secure in the combined DP/MPC model. Our empirical evaluation demonstrates that we can compute statistics over 10,000 keys in 20 seconds and can scale up to 30 servers while obtaining results for a single key in under a second.
翻译:在保护用户隐私的同时计算总统计数据的日益流行的方法是当地差异隐私。在这个模式下,用户在将数据发送到一个不信任的中央方之前会对其数据进行扰动,然后将数据发送到有待处理的中央方。关键值数据是一种自然发生的数据类型,尚未在当地信任模式中进行彻底调查。现有关键值数据统计计算LDP的解决方案受到每个用户增加自身噪音的内在准确性限制的影响。多党计算(MPC)是LDP的常见替代方法,它取消了对受信任的中央方的要求,同时保持准确性;然而,对关键值数据应用MPC会导致过高的计算费用。在这项工作中,我们提出了选择性的多党计算,这是一种新的分配计算方法,它利用DP渗漏来有效准确地计算关键值数据。我们表明,我们的协议满足了纯DP,并且在DP/MPC综合模型中非常可靠。我们的经验评估表明,我们可以在20秒内对超过10,000个键进行计算,并且可以扩大至30个服务器,同时在第二秒内获得单一键的结果。