While clients' sampling is a central operation of current state-of-the-art federated learning (FL) approaches, the impact of this procedure on the convergence and speed of FL remains to date under-investigated. In this work we introduce a novel decomposition theorem for the convergence of FL, allowing to clearly quantify the impact of client sampling on the global model update. Contrarily to previous convergence analyses, our theorem provides the exact decomposition of a given convergence step, thus enabling accurate considerations about the role of client sampling and heterogeneity. First, we provide a theoretical ground for previously reported results on the relationship between FL convergence and the variance of the aggregation weights. Second, we prove for the first time that the quality of FL convergence is also impacted by the resulting covariance between aggregation weights. Third, we establish that the sum of the aggregation weights is another source of slow-down and should be equal to 1 to improve FL convergence speed. Our theory is general, and is here applied to Multinomial Distribution (MD) and Uniform sampling, the two default client sampling in FL, and demonstrated through a series of experiments in non-iid and unbalanced scenarios. Our results suggest that MD sampling should be used as default sampling scheme, due to the resilience to the changes in data ratio during the learning process, while Uniform sampling is superior only in the special case when clients have the same amount of data.
翻译:虽然客户抽样是当前最先进的联合学习(FL)方法的核心操作,但这一程序对FL趋同和速度的影响迄今仍未得到充分调查。在这项工作中,我们引入了一个新的分解理论,以利FL趋同,从而可以清楚地量化客户抽样对全球模型更新的影响。与以往的趋同分析相反,我们的理论提供了某种趋同步骤的确切分解,从而能够准确考虑客户抽样和异质性的作用。第一,我们为以前报告的关于FL趋同和聚合权重差异之间关系的结果提供了一个理论依据。第二,我们第一次证明FL趋同的质量也受到由此形成的组合权重差异的影响。第三,我们确定综合权重之和是另一个减速的来源,应当等于1,以提高FL趋同速度的速度。我们理论只是一般性的,并在此适用于多货币分布和统一抽样。在FL的两次默认客户抽样权比中,在取样权定的比值中,通过一个测试数据序列来显示,在取样权定值中,在Smalalimal的模型中,在使用一个数据序列中,在我们的抽样测算中,在Smalalal的模型中,在使用数据中显示,默认数据中,在Smalalalalalalalalal的比值分析中,在数据中显示的比值的比值的比值比值中显示数据是比值的比值的比值的比值的比值中显示。