Few-Shot Relation Extraction aims at predicting the relation for a pair of entities in a sentence by training with a few labelled examples in each relation. Some recent works have introduced relation information (i.e., relation labels or descriptions) to assist model learning based on Prototype Network. However, most of them constrain the prototypes of each relation class implicitly with relation information, generally through designing complex network structures, like generating hybrid features, combining with contrastive learning or attention networks. We argue that relation information can be introduced more explicitly and effectively into the model. Thus, this paper proposes a direct addition approach to introduce relation information. Specifically, for each relation class, the relation representation is first generated by concatenating two views of relations (i.e., [CLS] token embedding and the mean value of embeddings of all tokens) and then directly added to the original prototype for both train and prediction. Experimental results on the benchmark dataset FewRel 1.0 show significant improvements and achieve comparable results to the state-of-the-art, which demonstrates the effectiveness of our proposed approach. Besides, further analyses verify that the direct addition is a much more effective way to integrate the relation representations and the original prototypes.


翻译:几小节关系提取法的目的是通过培训预测一对一对实体在一句话中的关系,在每个关系中都有几个贴标签的例子。最近的一些著作引入了关系信息(即关系标签或描述),以协助基于原型网络的示范学习。然而,它们大多通过设计复杂的网络结构,例如产生混合特征,与对比学习或关注网络相结合,间接限制每个关系类的原型,通常通过设计复杂的网络结构,例如生成混合特征,与对比学习或关注网络相结合。我们认为,在模型中可以更明确和有效地引入关系信息。因此,本文件建议直接增加一个介绍关系信息的方法。具体地说,对于每一关系类来说,关系代表首先通过搭配两种关系观点(即[CLS]象征性嵌入和所有象征嵌入的平均值)产生关系信息,然后直接添加到原始的火车和预测原型。基准数据集“小Rel 1.0”的实验结果显示显著的改进,并取得可比较的结果,表明我们拟议办法的有效性。此外,进一步的分析还证实,直接增加直接增加是将原型关系纳入原型关系的一种非常有效的办法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员