While existing depression prediction methods based on deep learning show promise, their practical application is hindered by the lack of trustworthiness, as these deep models are often deployed as \textit{black box} models, leaving us uncertain about the confidence of the model predictions. For high-risk clinical applications like depression prediction, uncertainty quantification is essential in decision-making. In this paper, we introduce conformal depression prediction (CDP), a depression prediction method with uncertainty quantification based on conformal prediction (CP), giving valid confidence intervals with theoretical coverage guarantees for the model predictions. CDP is a plug-and-play module that requires neither model retraining nor an assumption about the depression data distribution. As CDP provides only an average coverage guarantee across all inputs rather than per-input performance guarantee, we further propose CDP-ACC, an improved conformal prediction with approximate conditional coverage. CDP-ACC firstly estimates the prediction distribution through neighborhood relaxation, and then introduces a conformal score function by constructing nested sequences, so as to provide a tighter prediction interval for each specific input. We empirically demonstrate the application of CDP in uncertainty-aware depression prediction, as well as the effectiveness and superiority of CDP-ACC on the AVEC 2013 and AVEC 2014 datasets.
翻译:暂无翻译